Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013¬タモ14 Solar Energy Prediction Contest
نویسندگان
چکیده
In 2013, American Meteorological Society Committees on AI (artificial intelligence) Applications organized a short-term solar energy prediction competition aiming at predicting total daily solar energy received at 98 solar farms based on the outputs of various weather patterns of a numerical weather prediction model. In this paper, a methodology to solve this problem has been explained and the performance of ordinary LSR (least-square regression), regularized LSR and ANN (artificial neural network) models has been compared. In order to improve the generalization capability of the models, more experiments like variable segmentation, subspace feature sampling and ensembling of models have been conducted. It is observed that model accuracy can be improved by proper selection of input data segments. Further improvements can be obtained by ensemble of forecasts of different models. It is observed that the performance of an ensemble of ANN and LSR models is the best among all the proposed models in this work. As far as the competition is concerned, Gradient Boosting Regression Tree has turned out to be the best algorithm. The proposed ensemble of ANN and LSR model is able to show a relative improvement of 7.63% and 39.99% as compared to benchmark Spline Interpolation and Gaussian Mixture Model respectively. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
ارزیابی دقت روشهای شبکه عصبی مصنوعی و عصبی- فازی در شبیهسازی تابش کل خورشیدی
Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...
متن کاملEstimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملSolar radiation: Cloudiness forecasting using a soft computing approach
Solar energy is one of the most important energy sources with increasing penetration into the power supply systems of many countries, due to the reduced environmental impact of its operation. One of the important factors of the efficiency of photovoltaic systems is the predictability of solar radiation, which depends on the clouds and the meteorological conditions, the occurrence of which is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016